

Water system For Engine's Improvement Hydrogen-Oxygen mixture generator

Patent: 0001404965 Patent: 0001405327

Hydromoving Water's Energy

Compact System – hm01 Fap/Dpf Cleaner ver. 2016

Compact System Pro- hm3250 ver. 2018 Fap-Dpf Cleaner, Engine Displacement 3200-5000

The company "Hydromoving srl" is located in Fossacesia (CH), Italy

For info and more

info@hydromoving.com

The company Hydromoving Srl was founded thanks to the commitment of Lorenzo Errico and his passion for engines, electronics and innovations bound to "green technologies". In this path several enthusiasts join in his own sector, creating the HydroMoving project.

We are the only ones in the world to have a patented, tested and certified technology for the production of oxygen hydrogen gas (gas produced by distilled water) on board and on demand with an electronic injection system in the combustion chamber of any type of internal combustion engine that **reduces pollutant emissions by 90%.** The system guarantees a CO_2 reduction of $CO_2 \ge 30\%$.

The Hydromoving System

an innovative device for producing and adding a mixture of H₂, O₂ and a minimum calculated amount of water droplets to the conventional fuel flow of an internal combustion engine.

 It improves and optimizes the fuel consumption •Reduces the polluttant concentration relaesed at the

> Patent: 0001404965 Patent: 0001405327

System Operation Circuit Schematic

Patent: 0001404965 Patent: 0001405327

Hydromoving Electrolytic Cells Efficiency diagram until 98%

Several test-run in our laboratory show the efficiency of gas production rate in a range between 92% and 98%. The efficiency is intended as a comparison with theoretical process (for which the efficiency is 100%)

The HM System is the only one in the world that uses 1 mm² cables for the supply of electrolytic cells.

Suche results came from the application of the approach suggested by the theory of "Coherence Domains" of water, released by the Italian physicists Prof. Emilio Del Giudice and Prof. Giuliano Preparata.

Historical Notes

Water in ICE – historical notes

Engine with water injection (WWII)

Aviation Engines:

- BMW 801 (14 cylinders radial double star 1600Hp 41 liters)
- **Daimler-Benz DB 605 with MW 50** (12 cylinder V revers 60° 2100Hp 36 liters)
- Pratt & Whitney R-2800 (18 cylinders radial double star 1474Hp 46 liters)

This system allowed to increase the available engine power through the injection into the cylinder of fuel with a mixture composed by 50% water and methanole, for a short time period (10'). Without water the DB 605DC engine generated a maximum power around 1'474 Hp (1'099 kW), with water system switched on, called MW 50, this power went up to

2'000 Hp (1'491 kW)

Water in ICE – historical notes

Engine released with water injecton system

✤ <u>Automotive:</u>

- Escort Cosworth 4wd (fino a oggi, racing)
- Oldsmobile F-85 (1962) -
- Saab 99 Turbo S (1978)

Before you buy any low-priced car... rive the new **F-85** ... every inch an **OLDSMOBILE** !

In the wheel of this for our scalar from Olli- hilis and you'l function can be distinguish the one-parts half thought in parts that any elitism is staffing a loady to part the result of the one-part half thought in parts in the half the oper the scalar scalar and models the staff of the scalar scalar scalar scalar scalar the staff of the scalar scalar scalar scalar scalar the scalar scala	Renth in specif. Their trans. Office with a tempt on general right later the TaW's excitation Robotstic Regime	Note the start fractly had placety of some tests, while some, mixed out furthers and starts found in local local of some for imaging some field on the function of some for imaging some field on the function where the same placet some in the local Wagnet. Here show no some some placet frame is not been passed of both some some that Wagnet the starts are placet and before an thermal Wagnet the starts are placet and before an imaging them. The start is placet and before imaging the start where the starts and the start some some the starts where the starts are start of the starts and the starts are starts. There is a 100 dust apped are placet
of payre allocs searined with highr one-	and the desired states and the second states and	winners a series where, with a series rap

These systems were used with two purposes:

- <u>Reduce the inlet air temperature (for</u> <u>turbo and naturally aspirated)</u>

- <u>Let the increase of engine</u> <u>compression ratio (Otto cycle)</u>

Water in ICE

RESEARCH AND STUDIES REFERENCES

Active role fo Water and Hydrogen

hydromoving H₂O Energy

Investigation of turbulent combustion in SI-homogeneous charge engines using hydrogen-gasoline mixtures

Enrico Conte

LAV - Institut fuer Energietechnik

ETH Zurich

2006

- Exhaust recombination
- •Combustion improvement (PM, HC, CO)
- Active role on nytrogen oxides
- BSFC improvement
 - Here are investigated NOT engine hydrogen fed, but around <u>Hydrogen added to</u> <u>combustion</u>.

hydromoving

Hydrogen in ICE

Effect of H2/O2 addition in increasing the thermal

efficiency of a diesel engine

S. Bari, M. Mohammad Esmaeil

Sustainable Energy Centre, School of Advanced Manufacturing and Mechanical Engineering, University of South Australia, Australia 2010

Fig. 2. Variation of brake thermal efficiency with H₂/O₂ percentage.

Effect of H2/O2 addition in increasing the thermal efficiency of a diesel engine

S. Bari, M. Mohammad Esmaeil

Sustainable Energy Centre, School of Advanced Manufacturing and Mechanical Engineering, University of South Australia, Australia 2010

Fig. 11. Variation of the CO with H_2/O_2 percentage.

Fig. 8. Variation of HC emission with H₂/O₂ percentage.

Effect of HHO gas on combustion emissions in gasoline engines Sa'ed A. Musmar , Ammar A. Al-Rousan Department of Mechanical Engineering, Faculty of Engineering,

Mutah University, Mutah, Jordan 2011

Fig. 4. Variation of carbon monoxide concentration with engine speed.

. Variation of nitrogen oxide concentration with engine speed.

Fig. 6. Variation of nitrogen oxides (other than NO) concentration with engine speed.

Fig. 9. Plot showing the effect of using HHO on hydrocarbon concentration in exhaust gas with variable engine speed (rpm).

- •Exhaust recombination
- •Combustion improvement (PM, HC, CO)
- Active role on nytrogen oxides
- •BSFC improvement

Effects of On-board H2 and Water Injection in a Diesel Generator Rick Cameron University of Southern Queensland Faculty of Engineering and Surveying 2012

Figure 24: The effects of HHO and water injection on NOx at 55% engine load.

PERFORMANCE CHARACTERISTICS OF OXYHYDROGEN GAS ON TWO STROKE PETROL ENGINE G.Ajay Kumar, G.VenkateSwara Rao

Dept.of ME, Bonam Venkata Chalamamaiah College of Engineering & Technology, Odalarevu, AP, India

2013

Figure 7 Variation of Brake Specific Fuel consumption in kg/kW-hr v/s load in kg

in kg

- •Exhaust recombination
- •Combustion improvement (PM, HC, CO)
- •Active role on nytrogen oxides

•BSFC improvement

Conventional System for Hydrogen Generation

Supplying electric energy it's possible the scission of water mulecules obtaining hydrogen and oxygen, as demonstrated by electrochemical Faraday laws.

But....

Such process requires

 $\begin{array}{l} \text{H}_2\text{O}_{(l)} \mbox{+} \mbox{44,1 kJ/mol} \rightarrow \text{H}_2\text{O}_{(g)} \mbox{ (0.01225 kWh)} \\ \text{H}_2\text{O}_{(g)} \mbox{+} \mbox{242 kJ/mol} \rightarrow \text{H}_{2\,(g)} \mbox{+} \mbox{O}_{2\,(g)} \mbox{ (0.06722 kWh)} \end{array}$

<u>Total energy given: 286,1 kJ/mol (0.07947 kWh)</u> $H_{2(g)} + O_{2(g)} \rightarrow H_2O_{(g)} + 242 kJ/mol (0.06722 kWh)$

[242 kJ/mol is equivalent to 2.5 eV referred at single molecule]

Total energy available (ideally): 242 kJ/mol (0.06722 kWh)

In ideal combustion conditions of produced hydrogen, it's possible use just the 85% of used energy for its production

Supplying a cell using the engine's power:

MOVING H₂O Energy

Theoretical Notes

Patent : 0001404965 0001405327

How it works and why Requires very low power

Efficient system for hydrogen supplying to the ICE

Efficient system for hydrogen supplying to the ICE


```
1 A = 1 \cdot 10^{-10} m

1 photon \lambda = 10^{-7}m = 1000A

1 molecule H<sub>2</sub>O = 1A
```

The Hydromoving system is based on these concepts

Efficient system for hydrogen supplying to the ICE

H₂O Energy

Patent: 0001404965 Patent: 0001405327

Result

Compact System Pro-hm3250

Fap-Dpf Cleaner, Engine Displacement: 3200-5000, App control IOS

European NEDC Cycle : the challenge

Patent: 0001404965 Patent: 0001405327

Tests performed at International Laboratories accredited with the Italian Ministry of Transport. Control Sistem, MMarelli, FCA / Elasis.

TESTED VEHICLE

Nissan 370 Z

CONTROL SISTEM S.r.I.

via Cuneo n.7, 10044 Pianezza (TO) Italy

Cyclo number:	1160				Date:		05/02/11			
Dycle number:	1162 ECE EU				Date:		05/02/11			
Operator:	Cassano				Customer:		Biosolar			
Driver:	Vendemi	iati			Oustonier.		Diosolai			
Anufacturer:	Nie	econ			Inertia (Ka):				1650	
Model:	37	'0Z			Road resista	ance 20k	m/h [N]:		0	
Code:	CE	D462528	3		Road resista	ance 40k	m/h [N]:		0	
Chassis number:	07				Road resista	ance 60k	m/h [N]:		0	
Engine: Transmission:	37	oula			Road resista	ance 80k	m/n [N]: km/h [N]:		0	
Fraction:	Po	osteriore			Road resista	ance 120	km/h [N]:		565	
Fuel:	Ga	asoline			F0 [N]:				8	
Tyres pressure [bar]:	2,4	4			F1 [N/kmh]:				0,000)
Kilometers [km]:	51	5/5			IF2 [N/kmh ²]:				0,053	36
GENERAL DATA										
			Phas	e 1	Phase 2					
Ambient temperature	[°C]:		25,	2	25,1		Violations	[sec]:		2,0
sarometric pressure [mbarj:		96	0	968		THC density	[Kg/I]:		0.619
Absolute humidity [%]:	(a):		44, 9.1	8	9.13		CO densit	v [g/i]. v [a/l]:		1.25
Pd dry [kPa]:	<i>vi</i> '		3,20	5	3,186		CO2 densit	y [g/l]:		1,964
NOx correction factor:			0,95	52	0,951		NOx densit	y [g/l]:		2,05
Distance [m]:			410	0	7000		NO densi	ty [g/l]		1,338
Duration [sec]:			780	0	415		NO2 densi	ty [g/l]		2,054
CVS volume [m ³]:			68,5	25	35,20		Secondary dil.	factor		6
Particulate sample vo	lume [nl]:		126	,0	64,9					
		NTO								
POLLUTANTS WI				NOv [nom]	CO2 (9/)/a		O bigh [9/1/ol]		Dortioul	loto [ma]
Phase 1	THC [ppm]		O low [ppm]	NOx [ppm]	021%00		O high [%voi]	Filter	Particul	late [mg]
Sample	5.2	-	1.0	47.7	0.79		0.0	Initial weight	aht	
Dilution air	3,0		0,0	0,9	0,05			Final weig	ht	
								Difference	•	0,0000
Phase 2	4.0	_	0.0	000.4	1.40		0.0	Filter		
Dilution air	4,8	-	2,0	200,1	1,49		0,0	Final weig	iht	
Shadorran	2,.		0,0	2,0	0,00			Difference)	0,0000
	THC I	a/km1	NOx [a/km]	THC + NOx [a/kr	n] CO [a/km]		CO2 [g/km]	PM (a	/kml	Cons II/100km
		J			BAGS		(g)	1		
Phase 1	0,02	25	1,528	1,553	0,021		243,8	0,00	00	10,3
Phase 2	0,00	07	1,938	1,946	0,013		141,9	0,00	00	6,0
Iotai	0,0	14	1,787	1,800	0,016		179,5	0,00	00	7,6
Phase 1	0,0	16	1,552	1,568	0,018		244,5			10,3
Phase 2	0,00	05	1,976	1,981	0,016		143,2			6,0
Total	0,00	09	1,819	1,829	0,017		180,6			7,6
Phase 1	2.14	55	2 455	4 609	9.413		243.5			11.2
Phase 2	1,29	92	1,612	2,904	3,430		142,6			6,4
Total	1,6	11	1,923	3,534	5,640		179,9			8,2
Dhara 4					RAW 2	<u> </u>				r
Phase 2					-					
Total										
NOTES										
NUTES			Catalianatana							
penzina + idrogeno +	valori kaw '	1 senza	Catalizzatore							
OPERATOR:					CUSTOMER:					

via Cuneo n.7, 10044 Pianezza (TO) Italy

CYCLE DATA

Cycle number:	1161		Date:	05/02/2011		
Performed cycle:	ECE_EUDC 2 fas	si BENZINA	Job number: CS 022/11			
Operator:	Cassano		Customer:	Biosolar		
Driver:	Vendemiati					
VEHICLE						
Manufacturer:	Nissan		Inertia [Kg]:		1650	
Model:	370Z		Road resistan	ce 20km/h [N]:	0	
Code:	CD462528		Road resistan	Road resistance 40km/h [N]:		
Chassis number:	hassis number:		Road resistan	0		
Engine:	3700		Road resistan	Road resistance 80km/h [N]:		
Transmission:	Manuale		Road resistan	Road resistance 100km/h [N]:		
Traction:	Posteriore		Road resistance 120km/h [N]:		565	
Fuel:	Gasoline		F0 [N]:	F0 [N]:		
Tyres pressure [bar]:	2,4		F1 [N/kmh]:	F1 [N/kmh]:		
Kilometers [km]:	51575		F2 [N/kmh ²]:		0,0536	
GENERAL DATA						
	-	Phase 1	Phase 2			
Ambient temperature [°C]:	24,9	24,9	Violations [sec]:	14,6	
Barometric pressure [r	nbarl:	969	969	Fuel density [ka/l]:	0.7478	

Relative humidity [% 45,0 9,22 3,149 THC density [g/l] 45,0 0,619 Absolute humidity [g/kg 9,22 3,149 CO density [g/l] CO2 density [g/l] 1,25 1,964 Pd dry [kPa]: NOx correction factor: 0,953 4090 780 0,953 NOx density [g/l] 2,05 NO density [g/l] NO2 density [g/l] 1,338 2,054 Distance [m]: Duration [sec] 6960 415 68,23 35,25 VS volume (m³) econdary dil. factor 6 13,35 126,0 CVS dilution factor: 8,02 articulate sample volume [r 64,9

OLLUTANTS MEASUREMENTS THC [ppm] CO low [ppm] NOx [ppm] CO2 [%Vol] 24,1 17,0 62,6 1,00 Initial weight 3,2 0,0 0,9 0,05 Final weight ution ai Difference 0000 Filter ase 2 203,7 2,8 Sample Dilution air 5,6 2,9 4,0 0,0 1,67 0,07 Initial weight Final weight Difference 0.0000

Phase 1		NOx [g/km]	THC + NOx [g/km	CO [g/km]	CO2 [g/km]	PM [g/km]	Cons [l/100kr
Phase 1				BAGS			
	0,218	2,013	2,232	0,354	312,5	0,000	13,2
Phase 2	0,010	1,992	2,001	0,025	160,0	0,000	6,8
Total	0,087	2,000	2,087	0,147	216,5	0,000	9,1
				DILUTED			
Phase 1	0,208	2,045	2,253	0,301	318,3		13,5
Phase 2	0,006	2,036	2,042	0,023	161,0		6,8
Total	0,081	2,039	2,120	0,126	219,2		9,3
				RAW 1			
Phase 1							
Phase 2							
Total							
				RAW 2			
Phase 1							
Phase 2							
Total							

Test results of 4 NEUDC cycles performed at Control System (Turin) May 2011.

Nissan 370 Z engine displacement 3700 cc. petrol. Hydromoving system integrated into the vehicle.

Emissions values declared by the manufacturer

46.1. Exhaust emissions: CO HC NOX HC + NOX Smoke Particulate:	70/220 : 0.119 : 0.037 : 0.037 : - : -	0/EEC*2003/76/EC (B g/km g/km g/km g/km m-1 g/km)
46.2. CO2 emissions/fuel consu Urban conditions Extra-urban condit: Combined:	umption: 80/126 : 359 ions : 182 : 247	58/EEC*2004/3/EC g/km 15.2 g/km 7.7 g/km 10.4	1/100 km 1/100 km 1/100 km

TEST PERFORMED IN MAY 2012 ON NISSAN 370Z 3700 cc ENGINE DISPLACEMENT

EMISSIONS IMPROVEMENT

Nissan 370 Z

0,000

blank

<u>HC emissions</u> comparison between reference condition and new conditions given by Hydromoving system [REF.test 2011/2, CS] <u>CO emissions</u> comparison between reference condition and new conditions given by Hydromoving system [REF.test 2011/2, CS]

blank

test

comparison CO

test

EMISSIONS IMPROVEMENT

Nissan 370 Z

comparison CO₂

<u>CO2 emissions</u> comparison between reference condition and new conditions given by Hydromoving system [REF.test 2011/2, CS] <u>NO_x emissions</u> comparison between reference condition and new conditions given by Hydromoving system [REF.test 2011/2, CS]

comparison NO_x

EMISSIONS IMPROVEMENT

Nissan 370 Z

hydromoving

comparison consumption

<u>Gasoline consumption</u> comparison between reference condition and new conditions given by Hydromoving system [REF.test 2011/2, CS] <u>PM emissions</u> comparison between reference condition and new conditions given by Hydromoving system [REF.test 2012/6, MM]

comparison PM

TESTED VEHICLE Results

Nissan	NV200
--------	--------------

cat. 'N1' – Class 3

Diesel fed

TEST	TEST A FREDDO [®] ARTO IN % "SENZA dispositivo" vs "CON dispositivo"								
EMISSIONI	THC + NOx	THC	СО	CO2	NOX	Particolato PN			
UDC [g]	-16,28	-32,03	-8,13	5,05	-13,74	Counts	-127,80		
EUDC [g]	0,15	-26,34	63,04	0,34	0,44	Counts	-758,17		
UDC [g/km]	-15,58	-31,24	-7,48	5,62	-13,06	Counts/km	-126,44		
EUDC [g/km]	0,28	-26,17	63,09	0,47	0,57	Counts/km	-757,02		
NEDC [g/km]	-5,10	-30,87	-6,75	2,60	-3,62	Counts/km	-127,72		
	C	ONSUM			MPG	l/100km	Km/l		
UDC					-5,86	5,54	-5,86		
		EUDC			-0,47	0,47	-0,47		
		NEDC	NEDC						

European NEDC Cycle VEHICLE UNDER CONDITIONING

Particulate Reduction

Comparison of PM emissions with and without system, cold NEDC cycle

Details:

Nissan NV200 gasoline Tdci Without DPF/FAP

EUDC **cold** test without HM system> Photo 1A (Blue) EUDC **hot** test without HM system> Photo 1A (White) EUDC test **cold** with HM system (perfectly white filter)> Photo 1B (Blue) EUDC test **hot** with HM system (perfectly white filter)> Photo 1B (White) The excellence of the device is clearly visible.

Particulate Reduction

Excellent Test of the efficiency of the HM system. Perfectly White with HM system in operation. Perfectly Black without the HM system The HM system makes the EURO 6 Standard obsolete

Omoving

[s] Comparison of PM emissions with and without system, hot NEDC cycle

Nissan NV200 gasoline Tdci Without DPF/FAP

EMISSIONS

Nissan NV200 IMPORTANT								
IMPROVEMENTS:								
	STRONG REDUCTION							
NV200	uconditioned vehicle							
EMISSIONI	NOY	(HOT)			· · · ·	cor	nditioned v	vehicle
	12.29	Counts	262.20		EMISSIONI	NOX	Particol	ato PN
EUDC [g]	-12,29	Counts	-263,29		UDC [g]	-13,74	Counts	-127,80
UDC [g/km]	-13,27	Counts/km	-266,46		EUDC [g]	0,44	Counts	-758,17
EUDC [g/km]	-22,61	Counts/km	-88,97		UDC [g/km]	-13,06	Counts/km	-126,44
NEDC [g/km]	-19,17	Counts/km	-190,07		EUDC [g/km]	0,57	Counts/km	-757,02
	-	1	-	1	NEDC [g/km]	-3,62	Counts/km	-127,72

hydromoving H₂O Energy No_x Reduction

Nissan NV200

hyc

H₂O Energy

[s]

Comparison of NOx emissions with and without system, **cold** NEDC cycle

No_x Reduction

Comparison of NOx emissions with and without system, hot NEDC cycle

hydromoving H₂O Energy

TESTED VEHICLE Results

Model	Engine	Displacement (cm³)	Power
I.5 DCi	diesel	146 <mark>1</mark>	64 kW
K9K	TC		(86 Hp

Nissan NV200

cat. 'N1' – Class 3 **Euro 5 Standards** without particulate filter <u>**Diesel fed**</u>

TEST A CALDOS ARTO IN % "SENZA dispositivo" vs "CON dispositivo"								
EMISSIONI	Inc + NOx	тнс	со	CO2	NOX	Partico	lato PN	
UDC [g]	-11,85	29,37	-527,07	2,42	-12,29	Counts	-263,29	
EUDC [g]	-22,09	35,90	86,17	-2,67	-22,31	Counts	-88,51	
UDC [g/km]	-12,83	28,75	-532,54	1,57	-13,27	Counts/km	-266,46	
EUDC [g/km]	-22,40	35,74	86,14	-2,92	-22,61	Counts/km	-88,97	
NEDC [g/km]	-5,10	31,49	-285,11	-1,16	-19,17	Counts/km	-190,07	
	C	ONSUMI			MPG	l/100km	Km/l	
UDC					-1,59	1,56	-1,59	
EUDC					2,83	-2,92	2,83	
		NEDC			1,14	-1,15	1,14	

European NEDC

Cycle 'HOT TEST' VEHICLE NOT CONDITIONED

Hydromoving Technology HM-System Pro

Special features:

- 1) Ph control of the Basic solution
- 2) Electronic control of pressure (**0,3 Bar**) and overpressure (**0,5 Bar**)
- 3) Electronic control engine Stop/Run
- 4) Electronic control of gas leaks, System Off

Features :

1) Very small dimensions 28 * 18 * 20 cm.

2) Weight 8 kg.

- 3) Energy consumption certified 40 W / hour.
- 4) Energy efficiency 98 %
- 5) Production of hydrogen / oxygen mixture on demand per minute 0.3 / 4.5 liters electronically controlled by the throttle pedal / engine load / Map / Maf / injection time of the internal combustion engine.
- 6) Engine parameters control through **Can-Bus**.
- 7) Bluetooth system operation parameters control.
- 8) Increasing the overall efficiency of the engine from 0.21 to 0.25.
- 9) Drastic reduction of all the polluting elements produced by the internal combustion engine such as Pm (10-2.5), HC, NOx, SOx, CO, (- 90%) CO2 (-16/22%).

10) Increased motor power (+ 1.5 Hp) and torque (16/20 Nm).

- 11) Annual cost **50 € (50,000 km)**.
- 12) Maintenance every year Cost € 50.

Hydromoving Artificial Intelligence

• The first intelligent hydrogen / oxygen mixture generation system.

These are the special features of the update on the electronic control unit of the whole HM Compact Pro Artificial Intelligence system:

A) ModBus remote communication control Gps for the control and modification of all the parameters implemented on the new electronic board:

B) Electronic control of the Ph of the solution (percentage control of the conductivity), alarm signal for a solution that has deteriorated.

C) Check the number of cells installed, and activate the most suitable number of cells.

D) Control of the functionality of each cell

E) Control of all sensors, Pressure Main Tank, BB and Rail Injectors, Pump recirculation, Compressor pump Rail, Solenoid Valves Protection VI1 / VI2 / VI3, Relay protection Electronic card power supply, Manifold pressure control.

F) Injector connection check.

- G) CanBus Card Connection Check.
- H) Control Bluetooth card connection.
- I) Cooling fan operation check
- L) Checking the battery voltage.
- M) Checking control of gas leaks, System go in Standby
- N) Crash protection, System go off.

O) Double electronic system pressure control (0,3 Bar) Mt and Injectors rail.

After checking all the functions of the connected actuators and sensors devices, check if the car has the instrument panel switched on and go in Standby mode.

When the car's engine starts, the electronic control unit starts producing the hydrogen / oxygen mixture, waits for the injectors pressure to conform to the engine revolutions and start the injection of the Hydrogen /Oxygen mixture.

It checks the signals of the Map / Maf / Engine load , Engine injection time , Throttle position and calibrates the opening time of the Hydrogen / Oxygen mixture injectors.

Most Important :

Depending on the amount of Hydrogen / Oxygen mixture required by the engine, the electronic control unit intelligently decides the activation of the number of cells(1 to 4) more suited to the engine request, in this mode it saves even more energy by reducing the current absorption.

The Hydromoving Compact Pro Artificial Intelligence System, can inject the Hydrogen / Oxygen mixture, on internal combustion engines with turbo pressure in the manifold up to 3.5 Bar.

Special Features

1) Very small size 25 * 25 * 20 cm.

2) Weight 9 kg.

3) Energy consumption certified 36/40

W / hour.

4) Energy efficiency 98 %

 5) Production of hydrogen / oxygen mixture on demand (from 0,3 to 4,5 ltr/min.) electronically controlled by the throttle pedal / engine load / Map / Maf / injection time of the internal combustion engine.

6) Engine parameters control through Can-Bus.

7) Bluetooth system operation parameters control.

8) Increasing the overall efficiency of the engine from 0.21 to 0.25.

9) Drastic reduction of all the polluting elements produced by the internal combustion engine such as

Pm (10-2.5), HC, NOx, SOx, CO, (- 90%) CO2 (-16/22%). 10) Increased motor power (+ 1.5 Hp)

and torque (16/20 Nm).

VW Golf 1.400 cc petrol fitting

Engine van of Golf 1.4 Sportsvan in original configuration

Engine van volume in which fit the hydromoving system

hydromoving H₂O Energy

hydromoving system first fitting on engine van (piping and wiring in progress)

hydromoving system preliminary integration into the engine compartment

VW Golf 1.4 fitting

improved heat exchange system for system cooling

test configuration system to measure the heat to be managed by the system

piping details

Complete system ready for calibration, measurements, oprtimizations

THANKS FOR SHARING

I am proud to inform you that on February 16th 2018 and March 16th 2018 we have graduated two engineers from the University of Bologna (Energy Engineering)

The company Hydromoving srl has as its objective **the sale of the license to use all over the world, or the sale of patents and technology** to anyone interested, including the results of the R & D (Wltp/Rde) updated to the date of purchase.

Of course all subsequent updates will be performed under the supervision of Lorenzo Errico, who will be available for a further year of activity at the buyer.

We hope that the documentation may be interesting for you.

For any info or proposal on the HM device.

Tks

Lorenzo Errico Chairman & CEO Hydromoving srl - Italy

Contacts :

Mobile - + 39-331-2404681 (WA available)

Mail info@hydromoving.com lorenzo.errico@gmail.com